Revisited Network Representations
نویسندگان
چکیده
Visualizing network data is applicable in domains such as biology, engineering, and social sciences. We report the results of a study comparing the effectiveness of the two primary techniques for showing network data: node-link diagrams and adjacency matrices. Specifically, an evaluation with a large number of online participants revealed statistically significant differences between the two visualizations. Our work adds to existing research in several ways. First, we explore a broad spectrum of network tasks, many of which had not been previously evaluated. Second, our study uses a large dataset, typical of many real-life networks not explored by previous studies. Third, we leverage crowdsourcing to evaluate many tasks with many participants.
منابع مشابه
Spreading Activation in an Attractor Network With Latching Dynamics: Automatic Semantic Priming Revisited
Localist models of spreading activation (SA) and models assuming distributed representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In this study, we implemented SA in an attractor neural network model with distributed representations and created a unified framework for the two approaches. Our models assum...
متن کاملRevisited Experimental Comparison of Node-Link and Matrix Representations
Visualizing network data is applicable in domains such as biology, engineering, and social sciences. We report the results of a study comparing the effectiveness of the two primary techniques for showing network data: node-link diagrams and adjacency matrices. Specifically, an evaluation with a large number of online participants revealed statistically significant differences between the two vi...
متن کاملCombinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a "face" area?
Haxby et al. [Science 293 (2001) 2425] recently argued that category-related responses in the ventral temporal (VT) lobe during visual object identification were overlapping and distributed in topography. This observation contrasts with prevailing views that object codes are focal and localized to specific areas such as the fusiform and parahippocampal gyri. We provide a critical test of Haxby'...
متن کاملIntegrated Feature and Parameter Optimization for an Evolving Spiking Neural Network
This study introduces a quantum-inspired spiking neural network (QiSNN) as an integrated connectionist system, in which the features and parameters of an evolving spiking neural network are optimized together with the use of a quantum-inspired evolutionary algorithm. We propose here a novel optimization method that uses different representations to explore the two search spaces: A binary repres...
متن کاملStructural and view-specific representations for the categorization of three-dimensional objects
It has been debated whether object recognition depends on structural or view-specific representations. This issue is revisited here using a paradigm of priming, supervised category learning, and generalization to novel viewpoints. Results show that structural representations can be learned for three-dimensional (3D) objects lacking generalized-cone components (geons). Metric relations between o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017